Design and Evaluation of Hydrophobic Ion-Pairing Complexation of Lysozyme with Sodium Dodecyl Sulfate for Improved Encapsulation of Hydrophilic Peptides/Proteins by Lipid-Polymer Hybrid Nanoparticles
نویسنده
چکیده
Hydrophobic ion-pairing (HIP) complexation-based approach has been employed to reduce aqueous solubilities of peptide and protein drugs. The solubility of a protein molecule is due to presence of charged amino acids present on the surface. HIP complexation is a technique to complex ionizable functional groups of protein and peptide molecules with oppositely charged functional groups of a complex forming agent. The main objective of this study was to formulate and evaluate HIP complexes of lysozyme with sodium dodecyl sulfate (SDS) as an ion paring agent. Results of % binding effciency shown that the formation of HIP complexes were dependent on pH of lysozyme solution and molar ratio of lysozyme to SDS. Aqueous solubilities of HIP complexes were very low compared to lysozyme alone. The e¬ffect of HIP complexation on enzymatic activity of lysozyme was also studied. Further, lipid-polymer hybrid nanoparticles (LPNs) loaded with lysozyme and lysozyme:SDS HIP complex were prepared by using a solid-in-oil-in-water (s/o/w) emulsion solvent evaporation method and characterised with respect to morphology, size and encapsulation efficiency. We observed significant improvement in encapsulation efficiency for lysozyme:SDS HIP complex-loaded LPNs. This study demonstrates a novel approach of formulating protein-loaded nanoparticles which can also be employed for delivery of proteins. is able to partition largely in to hydrophobic polymer matrix during encapsulation process rather than the external aqueous medium [14,15]. As a result, HIP complexation significantly enhances encapsulation efficiency. This approach offers several advantages including (i) alteration the aqueous solubility of a hydrophilic protein molecule in a reversible manner, (ii) higher solubility of complex in the lipid phase which may result in higher permeation across cell membrane, (iii) enhanced encapsulation of protein molecule in a polymeric matrix, (iv) and (v) providing conformation stability to the protein molecule in the presence of organic solvents. Due to above mentioned reasons, HIP complexation-based technique has started to get acceptance in the preparation of colloidal dosage form such as nanoparticles for proteinbased therapeutics [14,16,17]. In this study, a more liposoluble lysozyme-sodium dodecyl sulfate complex was prepared using the hydrophobic ion pairing method. Sodium dodecyl sulfate (SDS) was used as an ion pairing agent. Then, effect of lysozyme solution pH and molar ratio of lysozyme to SDS on properties of HIP complex were investigated. Furthermore, lipidpolymer hybrid nanoparticles (LPNs) loaded with lysozyme and lysozyme:SDS HIP complex were prepared by using a solid-in-oil-inwater (s/o/w) emulsion solvent evaporation method and characterized with respect to morphology, size and encapsulation efficiency. Citation: Devrim B, Bozkır A (2015) Design and Evaluation of Hydrophobic Ion-Pairing Complexation of Lysozyme with Sodium Dodecyl Sulfate for Improved Encapsulation of Hydrophilic Peptides/Proteins by Lipid-Polymer Hybrid Nanoparticles. J Nanomed Nanotechnol 6: 259. doi: 10.4172/2157-7439.1000259
منابع مشابه
Preparation of Sodium Dodecyl Sulfate Modified Pyrrolidine-1-dithiocarboxylic acid Ammonium Coated Magnetite Nanoparticles for Magnetic Solid Phase Extraction of Pb(II) from Water Samples
This paper describes the development of a procedure for Pb(II) ions removal from various water samples after magnetic solid phase extraction (MNPs) by magnetite nanoparticles (Fe3O4 NPs) modified with sodium dodecyl sulfate (SDS) and pyrrolidine-1-dithiocarboxylic acid ammonium (PDTCAA). The synthesis of Fe3O4 NPs was certified by characterization techniques including field emission scanning el...
متن کاملPreparation of Sodium Dodecyl Sulfate Modified Pyrrolidine-1-dithiocarboxylic acid Ammonium Coated Magnetite Nanoparticles for Magnetic Solid Phase Extraction of Pb(II) from Water Samples
This paper describes the development of a procedure for Pb(II) ions removal from various water samples after magnetic solid phase extraction (MNPs) by magnetite nanoparticles (Fe3O4 NPs) modified with sodium dodecyl sulfate (SDS) and pyrrolidine-1-dithiocarboxylic acid ammonium (PDTCAA). The synthesis of Fe3O4 NPs was certified by characterization techniques including field emission scanning el...
متن کاملThe Effect of Hydrophobicity and Hydrophilicity of Gold Nanoparticle on Proteins Structure and Function
The surface parameter of nanoparticles such as hydrophobicity and a hydrophilicity on protein structure and function is very important. In this study, conformational changes of glucose oxidase (GOx) in the mercaptopurine: GNPs and 11-mercaptoundecanoic acid: GNPs as a hydrophobic and a hydrophilic GNPs surface was investigated by various spectroscopic techniques, including: UV-Vis absorption, f...
متن کاملThe Effect of Hydrophobicity and Hydrophilicity of Gold Nanoparticle on Proteins Structure and Function
The surface parameter of nanoparticles such as hydrophobicity and a hydrophilicity on protein structure and function is very important. In this study, conformational changes of glucose oxidase (GOx) in the mercaptopurine: GNPs and 11-mercaptoundecanoic acid: GNPs as a hydrophobic and a hydrophilic GNPs surface was investigated by various spectroscopic techniques, including: UV-Vis absorption, f...
متن کاملEvaluation of sodium dodecyl sulfate effects; the response of modified carbon paste electrode with nickel oxide nanoparticles in the presence of methanol
Synthesis of nickel oxide nanoparticles (NiO NPs) was carried out by Marrubium astranicum leaf extract. The average of particle sizes for NiO NPs was 40 nm. NiO NPs modified carbon paste electrodes in the absence (CPE/NiO NPs) and the presence of sodium dodecyl sulfate (CPE/NiO NPs/SDS) were examined for the electrocatalytic oxidation of methanol in alkaline solutions. The cyclic volta...
متن کامل